A BOLD Assumption

نویسندگان

  • Ivo Vanzetta
  • Hamutal Slovin
چکیده

intrinsic signals and fMRI, and more recently with optogenetic methods (Lee et al., 2010) have permitted remarkable insights into the organization of brain activity and the underlying neuronal mechanisms, suggesting that, within reasonable approximation, this assumption is correct. However, recent reports seem to challenge this assumption. How much? Schummers et al. (2008) recently reported that hemodynamic responses depend on astrocytic rather than on neu-ronal activity. The tuning properties of hemodynamic responses would thus reflect those of astrocytic populations rather than of neuronal ones. How different are those? Schummers et al. find that the tuning curves of nearby astrocytes and neurons are centered on the same maximum. Yet, astrocytes are somewhat more narrowly tuned, which would introduce some non-linearity in the translation of the neuronal into the hemo-dynamic response. More data and extensive simulation work are needed to determine the amplitude of this effect – in particular under anesthesia, which the authors report to affect neurons and astrocytes differently. However, hemodynamic responses integrate over comparatively large neuronal – and thus astrocytic – populations (at least the size of a cortical column). Moreover, both neuronal and astrocytic tuning curves are in most cases symmetric around their maximum. Therefore, at least the spatial bias introduced by the astrocytic filter is likely to be small. In other words, assuming that the hemodynamic responses reflect a linear integration over the neuronal tuning curves of a local population of neurons is probably not such a bad approximation – at least when it comes down to determine what kind of stimulus with respect to another a given patch of cortex is preferably responsive to. In more specific visual stimulus designs, involving perceptual suppression of a physically present visual stimulus (Maier et al., 2008), BOLD responses and neuronal ones (spikes and LFP, in particular the high frequency range) have been reported to not always go " hand in hand " , but to co-vary differently with visual perception. Although a caveat exists here with respect to the lack of detailed knowledge about the local network activity (Nir et al., 2007), these results suggest that hemodynamic responses might be coupled to the different neuro-nal processes in a stimulus-dependent way. Put differently: the relationship between hemodynamic and neuronal responses is not rigid, but can depend on the specific circumstances and the task. Finally, in a recent study performed by Sirotin and Das (2009) in awake monkey V1 it has been …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calibrated BOLD using direct measurement of changes in venous oxygenation

Calibration of the BOLD signal is potentially of great value in providing a closer measure of the underlying changes in brain function related to neuronal activity than the BOLD signal alone, but current approaches rely on an assumed relationship between cerebral blood volume (CBV) and cerebral blood flow (CBF). This is poorly characterised in humans and does not reflect the predominantly venou...

متن کامل

The distribution of BOLD susceptibility effects in the brain is non-Gaussian.

A key assumption underlying fMRI analysis in the general linear model is that the underlying distribution of BOLD Susceptibility is gaussian. Analysis of several common data sets and experimental paradigms shows that the underlying distribution for the BOLD signal is non-Gaussian. Further identification shows that the distribution is probably Gamma and implications for hemodynamic modeling are ...

متن کامل

Event-related fMRI: comparison of conditions with varying BOLD overlap.

Recently, event-related fMRI-experiments have been reported in which subsequent trials were separated by only 2 sec or less. Because the BOLD response needs 10 sec and longer to return to baseline, the event-related signal in these experiments has to be extracted from the overlapping responses elicited by successive trials. Usually it is assumed that this convolved signal is a summation of the ...

متن کامل

The stability of the blood oxygenation level-dependent functional MRI response to motor tasks is altered in patients with chronic ischemic stroke.

BACKGROUND AND PURPOSE Functional MRI is a powerful tool to investigate recovery of brain function in patients with stroke. An inherent assumption in functional MRI data analysis is that the blood oxygenation level-dependent (BOLD) signal is stable over the course of the examination. In this study, we evaluated the validity of such assumption in patients with chronic stroke. METHODS Fifteen p...

متن کامل

Vertex Stimulation as a Control Site for Transcranial Magnetic Stimulation: A Concurrent TMS/fMRI Study

BACKGROUND A common control condition for transcranial magnetic stimulation (TMS) studies is to apply stimulation at the vertex. An assumption of vertex stimulation is that it has relatively little influence over on-going brain processes involved in most experimental tasks, however there has been little attempt to measure neural changes linked to vertex TMS. Here we directly test this assumptio...

متن کامل

Comparison of contrast-response functions from multifocal visual-evoked potentials (mfVEPs) and functional MRI responses.

Contrast response functions (CRFs) from multifocal visual-evoked potential (mfVEP) and BOLD fMRI responses were obtained using the same stimuli to test the hypothesis of a linear relationship between the mfVEP and BOLD fMRI responses. Monocular mfVEP and BOLD fMRI responses were obtained using an 8 degrees in diameter, dartboard pattern stimulus with reversing checkerboards. Six contrast condit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010